LAMP-TR-004 January 1997
CFAR-TR-849
CS-TR-3734

Symbolic Compression and Processing of Document
Images

Omid Kia, David Doermann, Azriel Rosenfeld, Rama Chellappa

Language and Media Processing Labratory
Instititue for Advanced Computer Studies
College Park, MD 20742

Abstract

In this paper we describe a compression and representation scheme which exploits the
component-level redundancy found within a document image. The approach identifies
patterns which appear repeatedly, represents similar patterns with a single prototype,
stores the location of pattern instances and codes the residuals between the prototypes
and the pattern instances. Using a novel encoding scheme, we provide a representation
which facilitates scalable lossy compression and progressive transmission, and supports
document image analysis in the compressed domain. We motivate the approach, pro-
vide details of the encoding procedures, report compression results and describe a class
of document image understanding tasks which operate on the compressed representation.

***The support of the LAMP Technical Report Series and the partial support of this
research by the National Science Foundation under grant EIA0130422 and the Depart-
ment of Defense under contract MDA9049-C6-1250 is gratefully acknowledged.

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
JAN 1997 2. REPORT TYPE 00-01-1997 to 00-01-1997
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Symbolic Compression and Praocessing of Document | mages £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
L anguage and M edia Processing L abor atory, I nstitute for Advanced REPORT NUMBER

Computer Studies,University of Maryland,College Park,M D,20742-3275

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR'’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 36
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

1 Introduction

Technological advances in processing, storage, and visualization have made it possible to maintain
large numbers of documents in digital image form and make them accessible over networks. In
order to do this effectively, three primary concerns must be addressed. The first is document size.
An ASCII version of a document page can easily be stored in 2-3 KB, whereas a typical scanned
page may result in an image which requires between 500 KB and 2 MB. A single book stored in
image form can fill a CD-ROM to capacity. If we are to maintain documents in image form, an
efficient compression scheme is essential for both storage and transmission.

The second concern is that of efficient access to the compressed images. Traditional compres-
sion techniques used for document images have been successful in reducing storage requirements
but do not provide efficient access to the compressed data. It is desirable to use a compression
method that makes use of a structured representation of the data, so that it not only allows for
rapid transmission but also promotes compressed-domain processing and allows access to various
document components in the compressed domain.

The third concern is that of readability. Most lossy compression and progressive transmission
techniques use resolution reduction or texture-preserving methods that might render a document
image unreadable. It is desirable that a document be readable even at the highest levels of lossy
compression and at the start of a progressive transmission; it can then be augmented by subse-
quent information for better rendition. This is much preferable to a scenario in which the highest

resolution is the only readable resolution.

2 Background

Before describing our approach, it is useful to briefly review the general problem of image compres-
sion, issues in document processing which affect compression, and document image compression

itself.

2.1 General compression issues

Compression techniques offer an attractive option for storing large amounts of data efficiently.

Most approaches utilize signal compression techniques to reduce redundancy by transforming the

source data to a stream which represents the data by a compact encoding. The characteristics
of the transformation allow various degrees of compressibility; commonly used methods include
techniques such as vector quantization [10] and transform coding [17], among others. After ap-
propriate encoding has been performed, techniques such as Shannon-Fano coding [38], Huffman
coding [8, 9, 23, 42, 47, 48], and run-length coding [14] can be used to represent the encoded
data efficiently. The transformation can be tuned for specific media characteristics, and in the
case of lossy compression, can be tuned to preserve specific properties of the source data. Many
lossy compression methods use pixel-level redundancy and perform resolution reduction or texture-
preserving operations to achieve compression. Such approaches are unsuitable for document images
since much of the usable information is found at the symbol level rather than at the pixel level or
in the texture. While preserving the overall appearance of the document, resolution reduction may
render the text portions unreadable; and any attempt to texturally encode a document image will
fail since the useful information in such an image takes the form of high-contrast, high-gradient,
locally non-uniform pixel patterns. When we perform lossy compression, this must be done in such

a way as to eliminate only data which will not affect the usability (readability) of the document.

2.2 Document characteristics

Document images are scans of documents which are in most cases pseudo-binary and rich in textual
content. Informally, we can define document images as images that contain components that
resemble the symbols of a language. Many documents look like those shown in Figure 1 and are
represented adequately by binary images produced by scanning at a resolution of 300 dots per inch
(dpi). They tend to be highly structured in terms of layout, and have significant redundancy in
the symbols which occur in them.

Since a document can be used in a large number of ways, an important consideration is how
the image is affected by compression. For example, if we intend that the document ultimately be
read by humans, it is necessary for compression schemes to preserve the shapes of the components
so that they are recognizable by the reader after retrieval. If the document must be reproduced in
near-original form, techniques which reduce resolution may not be acceptable. Thus the required
resolution is dependent on the task; some resolutions may leave the document readable, but may

destroy fine detail.

‘Coniouum Mesh. Thesmodyn. 1 (1389 283-305 Conipaom Mechavies 5. The cesults for

Thef i ory simutato for the Dash provorype. Waies +nd Mineut corsslate well sith sl locf ecacions cachod rermo.

s Vorte Tangosows parntl sploion s th sulaion st bt the MPD . Each proseing motul s of

B Springerertsg 1989 ron am 2 wniprocessor and g spesdupsaescimowbsovet Thepco stvers procesirs il pevat ks

Jem i MPID . and 4 second-lovetcach

Seated s Smanor 5 Way on v oo et v 3 Wt oy oo e
gl with Totgo and provides (ced- dola sefercacen. Sinee MP3D puis 3 he processor and chster cacos oo
hack on he siency ofindivdual mem. vy laad on the memory satem, he heceat.

aryoperstinns. e laad ofprsate miswes sdds 51he The Faadigm machine i sinilac 16

On che Dash simulacor, Water and queoing dayy and reduces the muli- e Gipabax n ts hiscarchyof protes-
it bisve sesomible specdep | proeser s sors. caches. aad buses. s diffecent,
hrougit 64 procesives. For We have 7in Soveral aiher upplica- howikar o bt thephssicsl memary i

tesson i ha the o i o it Yopressor gt Ul ot o e ot oo
Trcse inelude ondy

A mathematical model for the hysteresis i ore : s o s
Thexeases feocn o 0 16, xche it ates 2 ppications (using, Barass i 41l herence protocol The clsturcomtain
in shape memory alloys ace retaivety constant.and e puicenl CeugardRok bl MEGH QK0sh. 5 7
e il by e lonton o

Yoagzhoag Hoo clustor ouly duersases o 69 10 64 125, s Hondied-cel roting applieation
Jesen. Thus i pees inctene o sty g ol g oo
Hormanse
The Preisach Model for Frromagaets is genecalized snd adapisd for the advesely alteet processor uilizaticns. ssienied applications, includiag vne for syncconization and explicit com
description of the hysteretic dehaviout of & polyerystalline spccimen of sape- ForMinet oo oeedop s o pertorming s Cholesks . posison
o tion, e sl i o tece

memory s, The hemalynuical prperies of e il sl

e Gesrtad by the LandsiDevonshis fice nécgy which contins four S i o i e WD gt i b gy o
parsmetnts, The eothesponding qusdeoglots alpmmmucrr oz rvalyuym]lmn ren- et in: Eeareical be uvuuml mddm\ln\\
body B w region in & four-dimensionat Preiach space. A tign in the:. .ppm.nvwn e Apndu(v o \hc FURAINDG, Dy irrsasing the depih of 1he hierar-
it s SB mc sts ro o regn cants gos HEb et O .,,.mv,r.u:‘.p, by el
RSt A A ariilorcrcoding of e EPID sppl Mpeedup on 16 rocessoes 11 105 Fur. tandi th. ((soploJakat s
S el e s € o4 M55 & \m sa he i eaomes « e k. § mostple
moving surfaces. This comerson e the sumercl cvlugian of he oo oo et besomes e kIt ol
ofect of complicsted Haking paths. G s m mmo On v m;: about all, our :w:mmbmm the m e hecone sigaificantty more compte. Un-
=d that agies well with observed ones, at least qualitatively. Sy»mzs mumcn MPID gencrie asead misfoca shates o maicates mat sy Aplcations quirémpens mach he hus i ratchy o
is given 20 the fnterior of the hysteresis loops. It tutas out that the daia ftom. Whes aaty one cluster is shoutd he sbhe 1o achiove over Hlimes its raffuc-shasing 7o wirements are
Ioaps tha "state” of the body is sot fully descried by the phase mmmm, being wredl, allthese mivses excseoviced speedup o the fpccessor systea, small, the global bus will z,c 2 botte
sather the past history wilt have a considerabe effect tovally. Homever, lien we go 10 wo nek. Buth requirsments dre cenrictive
s reser ey n,;”,c Related work Sifii‘.‘r‘?.ii‘:y‘ii;ﬁi‘f’fmm
fp— han Gt o srags i e
i e o i o There s ottes proposed satlble_(EEE Scsable Cohurent
The e ransionsin a sngle-rystal speimen of shaps mory aoys i o i s Uk b rbhesiss oo s e 54, T CES P SusFe ot
; [Mmm o e syace Wi conerehs ehes At (SCD) 4 e snderd
T i e W ol el Gecali Mo iy a1 CoMprRETv Compari of hcke el s T 1 provide 3 Aible
;m;";m:,» Do modl o 0 sy b o ePSet by 0 amee SR e e A P o e st S o ot o S
lyyisine s th s o delou e oot ot T earaabl peviey o ol <o wk s oo ng o Dk oo ko
seanse mmrw”m resnands differely 1o changes in Joad and tom perature: achi cngngcom 64 32k f et o rany o . oes) sy v 3 complts sy m de-
oné may sy thal tath crystallte & charactetized by dieforent quaslruplets of para- 6 pressts (70 parint i 8 g mochins paramcters. Noverheke, o g SC1 oy spetes e s
meters, rnmwomv\cxs are paints in § Goye-dimensianal space, which we call spoc som.of ikl ach procesing pode shod i
e Freach spaes I £ecogiton of 4 S soncrucion oy Peasc (1 con- M\,V,,,Hs,m, Wit : s e o
rming Foromegnete. The quadaples of lf rysafies 3 he specimen A = e g ot ol
oo A o0 . otk SET o v am e s

be i of DA Sut b he S, The e Cigowas aee | dandges e ifaron soct
o © o hose of D,

41 spsedupaver the cached w e

e st oach hvcw i, A e eplel, it it 0 Do

mens o acin areenorge {@sMax | composcd of The major difference between SC
0 honc e o e averl ot o o ol o 4 Dih e 1 e 900 et e

et i o 8 et D <huter 2ontns of sovral pracesnt Ahesiony ilormation 5 muats

i Gupiv ok vl iaiet My i
applications were sUp Uader an early cxche: Tt imined
Myt 07 =

(a))
INDUSTRY NEWS
SubACS: The Competition Begins

Prime contractor IBM will now compete with RCA for full-scale engineering
levelopment of the Navy’s new submarine combat system.

b Jaim P Ot s 0
Sotinent and Nevy ropraseaatives
proved e unsiing o amabk to
s qusion

1 vich o without Ads, (he Nayy
Pt systeen il sl e
Sl subuins o ool
<olnicr the projected sobsarine threat
0 G complx o ronment

tmin)~

Figura 7. Recovery af ditferen

ctions in tho vop of the Jighed.

The felatlon hetueen the vime, durisg which the vereus frsstiens ga fo
the top of the bed wd the l/v-ratic has not Beso muambified. It iz
Fatio lncrsases, the sapexat ion of the asg A fira ash o production prob.

and software writen in the Ada pro-

ot st ror 00 milien, 6 Nt 5 GG 0 L0 ORI G0k s N s e T

ostom o on e e
Subrieine Advanee g
SRS g Pt ooty T . e A3

bacmurn dn the 1ot prompted the Navy (o cesteaure the pr

stage of the demixing process the sepasation will take plecs hases on tho

‘Boat Divbion submiteed 3 bid for the

itterance tn snate of e pometcie
e ot 10 (BM Feders! Srsiems Divison. By,
[Wﬂm“l?\ Va., will facs competition Dec. i
o s s comior fof e e Sorrastiog
scorouton he stcond phae of the.son e lass suspension kept G ast of the i
. e A e e ik i T o . %L 3 Ften dhoce
second and ¢hird phases of ti i s conips
it oo o o Genal Dy e
the 3-8 mm fraction of the jaw crusher praduct conks; ongingt SuHACS program have
A Lk ot e o en : e e, scserding to :m Fore s, e e m?.m.‘.muﬁf‘e‘.(i'g.m”ﬁe it of o oo e
the fesd and 40 " ooaie wxture, Miwm To8 836 in o io EY-8) Submarine Conbat Syeiem, €10 sneoutivor and o L
cosseing ot cumman mesher Sompecy o5 Fleksmmecmmeietens vy GF o . o o o S G e “i?;m

;;mm e KA e S B ATRY Tektologen, ot e and
o o o rocmaof Fosarvel Gt e o et

ot
iy ie B0 WAC wasoins o 9 ety }Zf;a:?;’flpe‘iii‘msﬁli;.id?‘"““

0 ferpo

lass fast at st the lenguag i nc»\m - n

5 relingsockeens sovarmaty, conpon
N e I e T e MM‘;J‘;"XJM ot

ACicle Bebthr Sarvco No, ¢
o

aRCK ke @

(c) (d)

Figure 1: Examples of binary document images of the types usually found in a document image
database. These are images from the University of Washington document database [11], cropped
(automatically) to the main body of the text.

As is well known, the performance of conventional compression algorithms (such as those based
on transform coding [17], vector quantization [10], fractal compression [5], pattern matching and
substitution [3, 25], and other approaches) depends on the types of images being compressed, and
on their texture and content characteristics. Algorithms often do well on some classes of images and
not so well on others. Since document images differ significantly from scene images, it is reasonable

to assume they will benefit from a specialized compression scheme.

2.3 Document compression

Document image compression was first recognized as an important problem in the 1970s when
increased use of facsimile machines led to growth in document scanning and transmission. The
international telephone and telegraph communication committee (CCITT) then set out to create
a standard for the use of compression in facsimile transmission. In 1980 the first comprehensive
standard was released as the CCITT Group 3 transmission standard. This was followed by CCITT
Group 4 [7, 36, 12], which was originally meant for digital, as opposed to analog, transmission.
Both schemes use a run-length-based approach, with an extension to dual scan-line coding to
exploit coherence between successive scan lines. In Group 4, higher compression is achieved due
largely to the omission of error-correcting codes which were intentionally included in the Group
3 standard. The Joint Binary Image Group (JBIG) standard is a recent international CCITT
standard in which context modeling forms the basis of coding [33, 34]. At the lowest levels JBIG
uses a template model and adaptive arithmetic coding to encode predictions. Layers of the image
can be encoded separately to provide progressive transmission, based on resolution reduction and
the use of exception pixels. More recently, new developments in vector quantization, finite automata
theory [15], and pattern-based approaches [13] have provided alternative methods for document
compression with the ability to perform lossy compression. These techniques, however, were not
intended to facilitate compressed-domain processing, and very few of them show promise for future
extensions in that direction.

A basic approach to document compression, first suggested by Ascher and Nagy [2] and later
formalized by Witten et al. [45, 16, 44, 43], attempts to encode redundancy at the symbol level.
Ascher and Nagy proposed using a dynamic library in which document image components are

extracted and repeated components are indexed to the first instance of each component. Witten

The Preisach Model {
description of the hyste
memory alloys. The th
are described by the

parameters. The corres
body fill a region in a
loading path will swee:

nracece The nhvucical »

(a)

(00 Doofooc0) o000 1
Hooooioioo a 0o Choo
oo olloe. O0o o0
om0 Dooooiod [00o

ooo—oicoo. (00 ooooo
OoOp 00 o oofioo 60 o
o Jion oo 6l oo,

coooooo. 00 col0ooiool o

(b)

Figure 2: a) A sample document image; b) the bounding boxes of its connected components.

et al. proposed an enhancement of this approach by encoding an image in terms of constituent
patterns and residuals. This method is very similar to many pattern matching and substitution
algorithms [3, 18, 25, 27, 28, 36, 46], and provides a robust way to determine the similarity between
the components in an image. Redundancies in symbol shape are coded, resulting in redundancy
reduction in the two-dimensional pattern space as opposed to the traditional reduction in the one-
dimension pixel stream. Refinements and extensions of this basic concept, such as those described
in this paper, can provide a powerful basis for developing an approach to compression for document

image management systems.

2.4 Approach

The first step in our symbolic document image compression method is to find an initial set of
patterns in the image which can be used to form a library. In the case of Latin text, performing a
connected component analysis on the binary image provides a reasonable starting set. For connected
scripts or text in which the basic units are disconnected, more extensive segmentation would be
necessary.

A small portion of a typical document is shown in Figure 2a, and the bounding boxes of the
connected components are shown in Figure 2b. Because these patterns tend to appear repeatedly
in the image, they form a basis for compression. In cases where multiple characters touch to form a
single component, or where a single character is split into multiple components, representing them
as a new component lowers the compression factor only slightly. If salt and pepper noise is present,
it may give rise to small components; this will reduce compression but will have little or no effect

on the readability of the document.

We next treat each component as an observation and try to determine a best set of classes
(clusters) of the components and to choose a prototype image for each class. We begin by comparing
each observed component to all previously chosen prototypes (Figure 3). If a match exists, we assign
the observation to that class and refine the prototype of the class. If no match is sufficiently close we
regard the observation as defining a new class and take the observation as a prototype for that class.
After all observations have been processed, the prototype map typically looks like the one shown
in Figure 4. The shapes shown in Figure 4 resemble Fnglish characters because of the primarily
English content of the original document. For a document rich in mathematical symbols, some of
the prototypes would resemble mathematical symbols, and similarly for non-Latin languages the
prototypes would capture their symbol content. A number of matching algorithms can be used to
group similar patterns into clusters, including simple XOR, weighted XOR, Boolean AND-NO'T,
and compression-based template matching. They will be discussed in Section 3.

Each cluster of components is represented by a prototype. Depending on the sample space,
there will exist some amount of variability in the clusters. For some clusters, the amount of this
variation may be large enough that some of the components differ significantly from the prototype
and extra information must be recorded to remedy this. A residual map, the difference between a
given component and its prototype, is preserved and used to recover the components in a lossless
form when necessary. Examples of a component, a prototype, and the corresponding residual map
are shown in Figure 5. In addition to coding the prototype, we code the residual map separately
so that access to individual symbols can be achieved by access to their residual maps. The overall
encoding scheme is shown in Figure 6.

In our work special attention is given to performing document analysis tasks in the compressed
domain, without full decompression. In many situations only parts of the encoded information
pertaining to the given task require decompression.

Our approach makes a strong case for the use of symbolic compression in document image
coding. We will show that it is possible to code the dominant symbol shapes and their locations
within the image using only about one percent of the original image data. Using only this encoding
it is possible to implement a large number of common document analysis tasks such as skew
estimation/correction [24, 30, 35, 6, 4], Optical Character Recognition (OCR) [29], and layout
analysis [31, 32].

Close match Not a Close match

Classes Existing Classes

wﬂ\| . ¢
eh ¢ ¢
O P
E / g E Addec;glasss
h™ a

i

Figure 3: Clustering by pattern matching

omr - rne

1efhdl "t
ceaapesgn
1cmg- | bd
scayrcvu
-~ - nsu- |
Thtnircof
d

Figure 4: Typical cluster prototypes from a textually rich image

(a) (b) (c)

Figure 5: a) A component; b) a prototype; c) the residual map.

Compressed Document

Prototype Map DU Tasks
verLiaesn Skew Est./Corr.
it Keyword Search
Original Document SR LN ©| Page Segmentation

Language/Script ID
Subimage Retrieval

Component layout

(105) (405) (52.9)
(1045) (20,51) (50,45)|

Preview (Loss
Residual Map (y)

Lossless
[} | Reconstruction

Figure 6: Representation of a compressed document image with relevant processing access.

Although some work has been done on the processing of compressed document images [26, 40, 41]
the outlook for performing such processing on standard pixel-based compression representations
does not appear promising. In our approach, we use an indexable representation [22] composed of
independent streams for the prototypes, the locations of symbol instances, and the residual maps.
We have shown that lossy compression, progressive transmission, sub-document retrieval, skew
estimation/correction, and keyword searching can all be done efficiently using this representation
[22].

The main contribution of this paper is the development of a compression system that promotes
compressed-domain analysis by allowing symbol access. Although the approach works best with
clean images where multiple patterns repeat, it is flexible enough to adapt to situations where the
components correspond to arbitrary patterns in the image as opposed to symbols, or where many
symbols are mis-clustered.

The remainder of this paper is organized as follows. Section 3 describes the algorithms to
generate clusters. Section 4 describes the approach used to represent the clusters and Section 5
discusses the approach to page representation and the properties it preserves. Section 6 briefly

covers aspects of the implementation. A detailed discussion of applications that benefit from this

CENO

-

Padded Regions

Figure 7: Example of padding

implementation is given in Section 7, and Section 8 provides a summary of the overall system and

discusses directions for further research.

3 Clustering

A large number of clustering algorithms have been described in the literature [1, 37]. Some algo-
rithms, despite their wide usage for other purposes, are not applicable to symbol clustering. The
goal of symbol clustering is to identify the intra-class similarities of the symbols.

One example of an inappropriate clustering algorithm is principal component analysis, where
image rows or columns are concatenated into a vector and for a given set of symbol images a covari-
ance matrix is computed. The eigenvalues of this matrix give the variances along the eigenvector
directions. The effectiveness of this method depends on the rows and columns providing consistent
information for all of the images. If the images are of different sizes, this will not be the case. To
remedy this one can pad the observed image to a fixed size with a constant value. This padding
presents another problem by giving weights to the image values in the padded regions. In the
example shown in Figure 7, it can be seen that all observations have a similar shape in the upper
portion of the image, and that the lower portions of observations 6 and 7 look the most dissimi-
lar. However, since observations 1 to 5 are padded, the weight of the descenders in observations 6
and 7 is 2/7 of what it should be. As a matter of fact there should be a discrimination between
observations {6,7} and observations {1,2,3.4,5} because of their size.

A second type of clustering algorithm, vector quantization, is also affected by the variability

in observed sizes. In vector quantization, each symbol image is first ordered as a vector and this

vector is considered to be a point in a high-dimensional space. A small set of “prototype” vectors
is arbitrarily chosen and the distances to all prototypes from all of the observations are calculated.
We associate with each observation the prototype closest to it. The prototypes are then refined
by taking the means of their associated observations, and the process is repeated. The prototypes
and the distance measure divide the high-dimensional space into regions of coarser granularity;
hence the name quantization. The results obtained by this method are population-dependent;
more prototypes will be found in regions of the space where symbol images occur. Figure 8 shows
how the regions change when the number of samples in one of the clusters is increased.

A third class of clustering methods, which we will primarily use here, are pattern matching
and substitution approaches. If a candidate pattern is a good match to an existing prototype, it is
classified as a member of that prototype’s class; otherwise, it is considered for possible creation of a
new class. The advantages of using this type of method are that we do not need a priori knowledge
about the number of classes and that the method works with a variety of image sizes.

We can describe clustering via pattern matching more formally by first defining notation for an

observation X and a prototype P:

¥ - X(n,m) for(n,m)e R, = ({1,...,N.},{1,..., M,}) ()

0 otherwise

o | Pam) for () € Ry = ({1, N} (1, M) o)
0 otherwise
where it is assumed that foreground pixels have value 1 and background pixels (and pixels outside

the bounds of R, and R,) have value 0. A number of pattern matching methods which can be

used to define measures of closeness between an observation and a prototype are discussed below.

3.1 Hamming distance

The simplest method of matching two binary images is to measure their dissimilarity by the number

of pixels that are not equal. An error map calculated from the exclusive OR (XOR) of the observed

10

(a) (b) ()

Figure 8: Vector quantization regions in a two-dimensional sample space with a) equal-population
clusters; b) a 3:1 population difference; c) a 5:1 population difference.

image and the prototype is given by

X(n,m)® P(n,m) for (n,m)€ R,NR,
X(n, f ,mER,—R
E(n,m) = (n,m) or (n,m) » 3)
P(n,m) for (n,m) € R, — R,
0 otherwise

where E(n,m) is defined for all (n,m) € R. = R, U R,. Since the XOR operation returns a value
of 1 for a mismatch, summing the error map provides a measure of mismatch,

M=RJ|-M= > E(nm) (4)

(nym)€ERe

where |R.| is the highest mismatch score and M is the actual match. In this formulation, maxi-
mizing the match is the same as minimizing the mismatch of equation (4). Figure 9 shows three
examples involving an intra-class observation, a possibly confusing inter-class observation, and an
obvious inter-class observation, along with their mismatch scores. The amount of mismatch shows
some degree of discrimination among those cases, and by use of a threshold, we are able to identify
some classes. However, if the threshold is too high some intra-class confusion may arise, such as
clustering ‘e’ shapes with ‘c’ shapes. Taking a low threshold would result in too many clusters and
would hinder compression efforts. It is desirable to use a distance measure that provides enough

separation for dissimilar shapes.

11

Observations:
Prototype
x
@)
X
@
@)
X
o
[<B]
—
=
2
=
58]13[20[29
o 2[5 [10[17[26
% 14]9]16[25
a REm
o 2 51017}25
o5 58 [13[20[29
e el
s . OB
2 \asiohs
D 2[5]8]1320
5] 8]13[18[25

Figure 9: Matching results for three examples of observed components. Observation A is similar
to the prototype, observation B is close, and observation C is very different. XOR-ed, Weighted
XORed, and Distance-based differences are shown, as well as the pixels contributing to the mis-
match, and the mismatch value in parentheses.

12

3.2 Weighted Hamming distance

Improving the distance measure to discriminate between similar images (‘e’ and ‘¢’ of Figure 9) is
desirable; the weighted Hamming distance [36, 45] provides such an improvement. This distance
measure gives greater importance to error pixels which appear in close proximity to other error
pixels. Error pixels which appear close together tend to correspond to structurally meaningful
features.
The weighted Hamming distance operates on the error map of equation (3) by summing over a
neighborhood of each error pixel:
Ey(n,m) = E(n,m) x Z E(k,1) (5)
(k)EN (n,m)
where A (n,m) is the 3 x 3 neighborhood of the (n, m)th pixel. With this weighting strategy, error
pixels that occur in a group will give a higher mismatch than isolated error pixels. Figure 9 also
shows the results of using the weighted Hamming distance measure for the same observations and
prototype. Note that the small difference between observations A and B is now much larger when

the mismatch score is calculated by equation (4) and using the weighted error map F,,.

3.3 Sum of weighted AND-NOTSs

When we use an XOR operation the source of the errors is not considered. In particular no
distinction is made between errors in foreground pixels and errors in background pixels. It may
be desirable to give more importance to the foreground pixels since most of the information is
contained in them. This can be done by using the AND-NOT measure. The weighted AND-NOT

map is defined by
Eyon = (X A F)(T’q m) X Z (X A ?)(k‘, l)
L (k,D)EN (n,m) i (6)

vV [(XAP)mm)x S (XA P)KI)
(kDEN (n;m)

This map is useful in cases where the weighting has elevated the mismatch level due to misalignment,

as illustrated in Figure 10.

13

Il
HEE BEEE
HEE [[[]
[] [[]
HER [[] HEN]
[] | [| HNEEEEEEEEEE
==IIIIIIIII == ;
. - Mismatch = 98
[[[] HEN
L[] | | HEN
[[[[] |] | [[
HEEEE _EE
[L[[[]
HEE
Observation B
"5
[]
[1] [[[]
[] [[] [|
[] [| []
[] [1] [|
[1| L] BE(2[3[3[3][s[3[a]s]2] ;
s Mismatch = 62
[]
HE | |
[| HE
[[| []
HEE [1]
[[[[[]
B-P P-B Weighed And-Not

Figure 10: Example of an observed component compared to a prototype by measuring mismatch
as weighted XOR and as weighted AND-NO'T.

3.4 Compression-based template matching

Compression-based template matching [16] is a method of matching which attempts to measure the
mutual information between a prototype and an observation. This is done by measuring the entropy
of the residual left after matching the observation with the prototype, and trying to minimize it.

The entropy of a binary signal E which is composed of samples e; for i = 1, ..., [R.| is defined as
H(FE)= —Pr[e = 0]log(Pr[e = 0]) — Pr[e = 1]log(Pr[e = 1]) (7)

Pr[e = 0], the probability of a background sample, is defined as the number of 0 samples divided
by the total number of samples, and Pr[e = 1], the probability of a foreground sample, is then
1—Pr[e = 0]. A plot of the entropy as a function of Pr[e = 0] is shown in Figure 11. Note that the
maximum entropy is reached at Prfe = 0] = 0.5 and the minimum at Prfe = 0] = 0 or 1 (i.e. an
all-0 or all-1 residual map). This is rather different from previous approaches in which the number
of pixels in the residual map is minimized. In compression-based template matching, the idea is to
keep the residual pixels non-random with respect to each other and achieve a lower entropy for the
residual map. This is also beneficial for coding since the residual is supposed to be coded, and a

14

Binary Entropy Plot

0.9r

0.8

0.7r-

Entropy bpp
o o o o o
N w B o (=2
T T T T T

o
S
T

1 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Pr[e=0] = 1 - Pr[e=1]

o
o

Figure 11: Plot of entropy for a binary signal as a function of sample probability

lower entropy translates into a higher compression factor.

3.5 Distance-based template matching

Our final method of matching attempts to weight each error pixel according to the probability that
it was corrupted by degradation or noise. In this way we give lower weights to error pixels which
are likely to have resulted from noise and higher weights to others.

In studies of document image degradation at the character level it was observed that pixel errors
occur more often close to the edges of characters [19]. The probability of a pixel changing its value
decays as a squared exponential with the distance to an edge. Specifically [19], the probability of

a pixel changing value from background to foreground at distance d from an edge is given by
P(1|d,a,b) = 1 — P(0|d,a,b) = % (8)

where a is the background decay rate and b denotes the fact that the pixel in question really belongs

to the background. Similarly, for foreground pixels, the probability of changing value is

P(0]d, B, f) = 1 - P(1]d, 3, f) = e~ % (9)

15

R
() (b) (c) (d)

Figure 12: Example of a) an observation, b) a prototype, ¢) a residual map, and d) the distance
map of the prototype.

We can use this fact to conclude that observed differences which occur between a prototype and a
candidate pattern away from the edge of the prototype are more likely to be the result of meaningful
structure and not noise and should therefore be considered with higher priority during matching.

We can use this degradation model as a basis for a matching model which assigns weights based
on relative distances from the prototype edge. To simplify the model, we assume that « is equal to
[and calculate the weight matrix as a distance transform. This greatly reduces the computational
requirement by avoiding a scan to all components to determine a and and by removing an extra
exponential operation. We also use only a relative distance measure; this allows us to avoid the
computation of two squares and a square root.

Figure 12 shows a typical prototype and a map of the distances to the edges. (Figure 9 showed
the distances overlayed on the prototype image.) Summing the error pixels weighted by their
distance values provides a better separation for inter-class observations. For the intra-class ob-
servations in Figure 10, it is easy to see that the distance-weighted mismatch is 26 since all error
pixels occur on the edges and there are only 26 such pixels. Distance weighting separates the closest
inter-class observations shown in Figure 9 by 11 and 44.

It should be pointed out that distance-based template matching could easily be adapted to
other clustering techniques, at the cost of more computation. An example is adaptation to vector
quantization. Consider the clusterings of Figure 8, and suppose that for high values of z and y we
would like to weight the z values more heavily, and for low values we would like to weight the y
values more heavily. This would shift the region boundaries of Figure 8a in such a way that at the
top right we would have vertical thin regions and at the lower left we would have horizontal thin
regions. The result would be a partition that is dependent on location in the space as well as on

the population of observations in that area of the space. The distance ordering has a number of

16

Figure 13: Example of ambiguous membership and resulting residual.

desirable properties, and provides a good framework for document image processing and handling.

4 Cluster representation

Once we have obtained clusters and chosen prototypes, two concerns must be addressed: repre-
senting the residuals (the differences between the components and their associated prototypes) and

specifying the positions of the components in the image.

4.1 Residual representation

Replacement of the observations by the prototypes, which are the centers of clusters of observations,
yields a representation that does not reduce spatial resolution. The replacement may give rise to
three types of residuals. The first type is the most common variation from the prototype; it takes
the form of a silhouette around the prototype, and usually does not effect the readability of the
document, as seen in most of the residual maps of Figure 13 (an example also appears in Figure
5¢). The second type results from ambiguity between two similar components. An example of this
is shown in Figure 13 where the symbol ‘C’ was used as a prototype for the pattern ‘G’ in “Encore
GigaMax”. The third type arises when no appropriate clusters are available, as shown in Figure
13 for the letter ‘E’. This case arises when the overhead of creating a cluster is higher than just
tagging the component as a graphic entity and representing the entire component in the residual
map. In a large document set, the number of instances of this case will be small, since each symbol
will usually occur multiple times.

Due to the large size of the residual maps it is desirable to order them structurally. Since char-
acters degrade around their edges, as suggested by Kanungo et al. [19], it is reasonable to conclude
that the least significant portions of the maps are around the edges of characters, while pixels far-
ther away from the edges contribute more significant structural information. This can be confirmed

by noting the lack of structural difference between a character and its boldface counterpart, while

17

Small Structural Difference Large Structural Difference

|—1 |—E

Figure 14: Comparison of structural differences of two sets of components with similar pixel differ-
ences.

Instances Instances

88 pixels different
21 pixels different |

Prototype
Prototype P

20 pixels different I

(® (b)

79 pixels different 7

Figure 15: Examples of matching prototypes with symbol instances. A pixel difference measure
may allow symbols instances with significant structural difference to be matched to a prototype.

the difference is perceivable in characters with large numbers of pixels far from the edges of the
prototypes as shown in Figure 14. Figure 15 shows bitmap images in which the components, even
though they have been clustered together, have significantly different structure. The out-of-class
observations (Figures 15¢ and f) actually have lower mismatches with the prototypes (Figures 15a
and b). This suggests the need for a structural component in the matching process. Structural
coding can also provide a basis for lossy compression and progressive transmission. This subject is

beyond the scope of this paper but has been addressed in earlier work [20, 21].

18

4.2 Component location specification

The specification of component location is done in two parts. For coding efficiency the page is
divided into blocks of 256 x 256 pixels each of which can be addressed by a single byte. A component
is indexed by the relative location of the upper left corner of its bounding box with respect to the
upper left corner of the block. (The number of components in each block is also stored.) These
locations and the block’s address yield the absolute addresses of the components. This method of
address specification is used in order to provide direct access to the components. Relative position
specification is used in compression by Witten et al. [45], by specifying offset location from the
bottom right of the previous component to the top right of the next component. Their method has

smaller storage requirements but does not provide direct access to the components.

5 Page representation

In order to provide spatial access to image components in the compressed domain, it is convenient to
encode four types of information in four independent sections: the file header section, the prototype
section, the symbolic section (see below), and the residual section. The file header contains general
information which provides indexes to the prototype, symbolic, and residual sections and an index
to the header section of the subsequent page in a multi-paged document. (In this paper we have
considered only single-page documents.) The prototype section is a collection of prototype bitmaps
and their sizes. The symbolic section provides an encoding of the locations of components in the
image and the prototype of which each component is an instance. The residual section contains
the residuals produced after substituting the prototypes for the actual components. Each of these
four sections is encoded as a set of streams. Figure 16 shows the organization of the streams; they

are described in greater detail in the following subsections.

5.1 Streams

The file header section contains a single header stream and serves as an overall roadmap for the
representation, specifying global document image parameters as well as indices to the prototype,
symbolic, and residual sections and the streams they contain. The prototype section encodes the

library of prototypes and contains two streams, the prototype size stream, which records the size

19

Streams

General
Representation :
Prototype Size
Header
Prototype Images
Prototype

Block Membership

Compopnent Lgyout Index
Symbolic)

Component Layout
T
Residual i

Residuall Map Index

Residual Map

Figure 16: Data structure organization

of each prototype bitmap, and the prototype image stream which encodes the actual bitmaps.
Two extra NULL prototypes are used to serve as indexes for small and large graphic components
which are represented in the residual stream. These prototypes are used to specify appropriate
numbers of bytes for the sizes of the graphic components so they are indexable.

The symbolic section specifies the location of each component along with the prototype which
represents it. To reduce storage requirements in recording the component locations, the image
is divided into 256x256 blocks and component locations are specified relative to each block. To
calculate the absolute address of a component during decompression, the block membership
stream provides a block index and the component layout stream provides the vertical and
horizontal offsets of the components within the block along with their prototype labels. The
component layout index stream is used to index the component layout stream after it is
compressed.

The residual section stores the residual for each component and is indexed in the same way and
in the same order as its symbolic counterpart. This requires the residual map index stream, an

index into the residual map, and the residual map stream itself.

20

The advantage of representing different types of information by different streams and then
indexing the streams is that applications which need access only to limited information do not
need to decompress the entire document. For tasks such as skew estimation and correction, which
may require only the locations of the components, we need access only to the prototype size and
component layout streams. For a task such as keyword searching or OCR, the prototype needs to
be accessed, and minimal access to the residual map stream may also be needed. To extract and
decode subregions of the document image, we can access the needed blocks, and we can then access
the components in these blocks efficiently using the index structures.

The size of each stream is specified in a stream header. The header remains uncompressed
so that access to each stream is independent of access to the other streams. Each stream can be
compressed individually or a common “dictionary” can be implemented and made available in the
header. In our implementation, we index into the component layout stream by referencing block

boundaries and into the residual map stream by referencing individual components.

5.2 Compressing the streams

Huffman coding is used to compress the streams; it requires two steps. First the streams are scanned
to create a common Huffman lookup table. Second the individual streams are transformed according

to the newly created table. Creating indexes into the compressed streams will be discussed below.

5.2.1 Header section

Header stream: This stream consists of indices to the streams contained in the prototype, sym-
bolic, and residual sections. The indices are stored as the sizes of the individual streams; they

remain uncompressed.

5.2.2 Prototype section

Prototype size stream: Prototypes are limited to 256x256 pixels so we can use single bytes
for their horizontal and vertical dimensions. These pairs are ordered as a stream and compressed.
The compressed size is recorded in the header. When required, the compressed stream can be

decompressed and used to index the prototype image stream.

21

Prototype image stream: The prototype image stream orders the pixels of each prototype, either
by row or column. The resulting array is packed into the prototype image stream and compressed.
The compressed size is recorded in the header. For decompression, the compressed stream is indexed
by the size stream. Knowing the sizes and number of prototypes from the prototype size stream,
and the size of the decompressed prototype image stream, the stream can be unpacked into the set

of two-dimensional prototypes.

5.2.3 Symbolic section

Block membership stream: We have divided the document image into 256 x256 non-overlapping
blocks. To index the blocks, we record the first row and column of the block in two bytes. We
create a stream for the number of components in each block, compress the stream and record the
size of the compressed stream in the header. During decompression we extract the stream and use
it to index the blocks.

Component layout stream: For each component in a block, we append to a list its position in the
block, by specifying a horizontal and vertical offset, and the cluster to which it belongs, by specifying
the identification of its prototype. If the component is associated with a NULL prototype, we also
record its size (the height and width of its bounding box). For each block, we compress the list and
record its compressed size in the header. We add this size to the component layout index stream
(described below) in one byte and start a new record for the next block. When all components in
all blocks are exhausted, we record the overall stream size. For full decompression, we ignore the
index stream and decompress the entire component layout stream. For partial decompression we
use the size information in the index stream and decompress only the needed part of the component
layout stream.

Component layout index stream: To index the component layout stream we form a stream
based on the compressed sizes of the component layout records. We compress the entire stream
and record the resulting size in the header. When the information in the stream is needed, we

decompress the entire stream.

5.2.4 Residual section

Residual map stream: Using the same encoding as for the component layout stream, we order

22

the residual maps into a stream based on their distance maps. For each residual map, we first pack
the pixels into bytes, submit that portion of the stream for compression, record the compressed size
in one byte, and record the ending bit offset in one byte. We do this for all residual images and
record the overall size of the compressed residual map stream in the header. For full decompression,
we extract the entire residual map stream based on its compressed size and unpack it. For partial
decompression, we use the decompressed residual map index stream to extract the needed segments
from the residual map stream.

Residual map index stream: For the index, we form a stream based on the compressed size of
the list of residual map streams for each component. We compress the entire stream and record
the resulting size in the header. When the information in the stream is needed, we decompress the

entire stream.

6 Implementation

To implement our system the first task is to identify appropriate patterns in the image to be
clustered. For Latin text, we use connected components of the binary image which are extracted
by examining successive scan lines. Components on a scan line are tagged and if successive scans
show connections between two components the components are merged. The contents of each
component’s bounding box are input to the distance-based template matching clusterer which
uses a small threshold value for assignment to a cluster. If too many clusters are created, based
on the number of clusters created relative to the number of objects observed, the threshold is
increased. NULL prototypes provide better cluster creation by avoiding contamination from out-
of-class observations. Once clustering is performed, clusters with small numbers of members are
discarded and their members are tagged as graphic entities and represented as residuals. The
residual map is then created for each component and ordered based on the distance transform.
(The ordering of residual pixels is discussed in [21].) We pack the residual map to eight bits for
better handling, and record its size as the number of bytes and left-over bits in the indexing stream.
All the streams are then Huffman coded for compression by creating two library codes, one for the
residual map stream and the other for the rest of the streams.

To test the system we used text regions from the first 122 scanned images (AO01BIN.TIF
to AOO6N.TIF) in the UWASH I database which is available from the University of Washington

23

[11]. For synthetic images we used IATpX-generated files from the same database (LOOOSYN.TIF
- LOOMSYN.TIF). Our basic compression package converts binary TIFF images to and from sym-
bolically compressed images. For synthetic, IATpX-generated images, it took a total of 855 seconds
to compress 23 files for an average of 37 seconds. The average resulting file size was 45312 bytes
compared to 57848 bytes in CCITT G4 coding and 82112 bytes in CCITT G3. For comparison, the
same images were compressed using packed bits and LZW compression, yielding average file sizes
of 198,015 bytes and 110,810 bytes respectively. With original images of 2550 by 3300 pixels, the
compression ratios are summarized in Table 1. For the case of scanned images, compression time

was an average of 66 seconds for the 122 files of Table 1.

Image Symbolic | MG | CCITT-G4 | CCITT-G3 | LZW | PACK-BITS
Synthetic 23.2 39 18.2 12.8 9.5 5.3
Scanned 13.0 27 17.8 9.7 8.7 5.5

Table 1: Compression ratios for synthetic and scanned images for different compression schemes

7 Applications in the compressed domain

This section discusses applications which can take advantage of our representation, and algorithms
which implement those applications. Performance is discussed, where applicable, for algorithms

running on a SparcStation 20 with the Solaris 2.5 operating system.

7.1 Lossy compression

A useful option in compressing an image is to be able to specify a quality of compression, or
a required size limitation. In document image compression, it is hard to identify a measure of
quality, which has to be related to the readability of the document. Most measures of quality are
related to the overall “power” in the error image, defined by the difference between the lossless and
lossy representations. We have found, however, that some pixels contribute more to the readability
of a document than others, and even if two representations give the same “error power”, one
may be more readable than the other. As described previously in our representation, we have

ordered the residual pixels associated with each component and can use different fractions of the

24

The Preisach Model f
description of the hyste
memory alloys. The the
are described by the 1
parameters. The corresy
body fill a region in a
loading path will sweeg

nracece The nhucical n

(a)

The Preisach Model f
description of the hyste
memory alloys. The the
are described by the 1
parameters. The corresg
body fill a region in a
loading path will sweeg

nracace The nhucical n

(b)

The Preisach Model f
description of the hyste
memory alloys. The the
are described by the 1
parameters. The corresg
body fill a region in a
loading path will sweeg

nracace The nhucical n

()

The Preisach Model f
description of the hyste
memory alloys. The the
are described by the 1
parameters. The corresg
body fill a region in a
loading path will sweeg

nracace The nhucical n

The Preisach Model f
description of the hyste
memory alloys. The the
are described by the 1
parameters. The corresg
body fill a region in a
loading path will sweer

nracace The nhucical n

(d) (e)

Figure 17: Lossy compression of images using a) 80%, b) 60%, c¢) 40%, d) 20%, and e) 1% of the
error streams associated with the components.

Figure 18: Difference between the original portion of the image and its lossy compression using a)
80%, b) 60%, c) 40%, d) 20%, and e) 1% of the error streams associated with the components.

residual map stream to achieve different degrees of lossy compression. We take the rendition of
the document without the use of any residual pixels as a baseline and add fractions of the residual
stream, increasing linearly.

Figure 17 shows an image which has been lossily compressed to varying degrees, with (a) being
the least compressed and (e) being the most. The percentage indicates the amount of residual
information kept for each non-NULL-clustered symbol (i.e., 100% would yield a lossless image).
Note that there is no observable difference between the least and most compressed images as
regards readability. The residual images shown in Figure 18 show that the residuals lie mostly on
the edges of the symbols, and that even at the highest levels of lossy compression, the rendition is
quite readable without any compromise in resolution. For the 122 images we achieved an average
compression ratio of 29.56 for 1% of the residual stream, 25.71 for 20%, 22.88 for 40%, 19.96 for
60%, and 15.67 for 80% of the residual stream. This is in comparison to lossless compression ratios

of 12.2 and 17.8 for symbolic compression and for Group 4 standard respectively.

25

cccceccecececcCc ccccececcecececeococ Cccccceceecoo0
ccecececceececcCce cccceccecceeceeccex Cccccccececcecoo0o
ccceccececcecececcec CCCCCCEEECCCT CCCCCCEEEOC O
ccecccececcecceccec CCCCCCEEECTC CCCCCCEEEOC O

cccccccccccccccccccccccccccccccccccc
cccccccccccccccccccccccccccccccccccc

@) (b) (©)

ccccCccceeco0o00 CcCCCCcCceec00O0 cccccceecec0O00O0
ccececececeeec0o00 CcCCCccceeec00o0 cccccceececo000

ccccccecececoaa ccccccecececooo ccccgcccececooo
ccccececeececoo cccccececeecenoa cccececceceeeooo

cccccccccccccccccccccccccccccccccccc

(d) (€) (f)

Figure 19: Progressively sending an increasing number of bits, from a) to the lossless rendition f).

7.2 Progressive transmission

In transmitting images, an ordered stream of information should be used to convey increasing
amounts of information, so that the image can be rendered losslessly, if the entire stream is trans-
mitted. In transmission of textured regions, taking a blockwise DCT (Discrete Cosine Transform)
of the image and sending one coefficient per block at each iteration provides a reasonable progres-
sive representation of the image. In the case of document images and the symbolic representation,
we first transmit all the prototype and symbolic information, and we order the residual maps based
on the distance transforms of the prototypes (or more precisely: of their complements). Sending
the residual maps in this order, largest distance first, renders the document quite readable at the
start and provides additional detail at each transmission iteration.

We have successfully implemented a progressive transmission system based on our representa-
tion. Figure 19 shows a progression for a test image which consists of instances of similar symbols;
we transmit pixels that are farthest from the prototypes’ edges first. Since larger components have
residual pixels with larger absolute distances, they are reconstructed first, which is desirable since

larger components are perceptually more salient than smaller components.

26

A mathematical model for the hysteresis
in shape memory alloys

Yongzhong Huo

The Preisach Model for ferromagaets is generalized and adapted for the
description of the hysteretic behaviour of a polycrystalline specimen of shape-
memory altoys. The thermodynamical properties of the individual erystallites
are described by the Landau-Devonshire free energy which contains four
The i of of a polycryst
body fill a region in a four-dimensional Preisach space. A thermodynamical
loading path will sweep surfaces across this region and change phases in the
process. The physical problem of the response of 2 specimen to applid loads
is thus converted into the geometrical problem of counting volumes between
moving surfaces. This conversion facilitates the numerical evaluation of the

Average retrieval time

The Preisach Model fi

description of the hyste -
memory alloys. The the__ =

-~~~
[
[<B]
(2

are described by the 18+

effect of complicated loading paths.
Load: ion curves and are simulat-
ed that agree well with observed ones, at least qualitatively. Special attention

is given to the interior of the hysteresis loops. It turns out that inside the
loops the “state” of the body is not fully deseribed by the phase fractions;
rather the past history will have a considerable effect

(@)

parameters. The correslé
body fill a region ina

loading path will sweey &= = &= = = = = =
sr I Area (pixels)

(d)

A mathematical model for the hysteresis

in shape memory alloys .
nracece The mnhyweical nn

(b) (c)

Figure 20: Subimages of image A0O01BIN.TIF a) (700,700)-(2300,2000); b) (700,700)-(1900,950);)
(830,1090)-(1280,1490); d) Retrieval time as a function of area

7.3 Sub-document retrieval

A common document browsing task requires retrieval and decoding of a subregion of the document
image. This may be useful, for example, for expanding a region such as a single article or picture
from a thumbnail of a compressed newspaper page. This can be done using our representation by
partially decoding the appropriate streams. Specifically, we decompress the prototype size, proto-
type image, block membership, component layout index, and residual map index streams, and only
partially decompress the largest streams, the component layout and residual map streams. Using
the layout index stream we decompress components in blocks which overlap with the subimage,
and according to the overlap of each component with the subimage we decompress its residual map.
An example is shown in Figure 20a. If the coordinates of a subtitle are known, we may decompress
only the subtitle (Figure 20b), and if the top left corner of the first paragraph is needed, we can
decompress accordingly (Figure 20c). We can decompress only the top part of the first page in a
document to determine the title and authors of the document. The processing time depends on the
area of the region of interest. Figure 20d shows a plot of decompression time versus retrieval area.
The time required to decompress small regions can be viewed as overhead time, and the increase

in time with area defines the scalability.

27

7.4 Skew estimation and correction

Skew estimation and correction are also important tasks in an OCR system. By using an algorithm
based on the Hough transform, we are able to estimate skew and correct it using our representation,
without having to fully decompress. We use only the position and size of each component. To
compute their values, we decompress the prototype size, block membership, and component layout
streams. We input the coordinates of the middle of the bottom of each component to a Hough
transform, and thus compute the skew. For the 122 images in our database, it took an average of
2.5 seconds and 9152 bytes per image to calculate skew to an accuracy of 1/640 vertical units per
horizontal unit. On the same set of test documents the average error was measured to be 0.1786
degrees. For skew correction, we modified the component layout and residual map streams and
reordered them if the components moved from one block to another. Reordering is computationally
expensive and does not contribute much correction for small skew angles. To improve performance,
we bounded the movement of the components across a block boundary to five pixels; below this
bound, movement is terminated at the edge of the block. For instance, if a component is located
close to a block boundary, and by deskewing, it moves two pixels into another block, it is moved
to the edge of its original block. We take the middle of the image as the reference point. The
translation in the vertical direction is computed by multiplying the horizontal distance from the
middle of the page by the slope of the line containing the reference point and component location.
Figure 21 shows two examples of skewed documents and the results of deskewing them. For the

122 test images, it took an average of 3.3 seconds to deskew an image.

7.5 Keyword Search

Keyword search is another important document-related task. A method reported by Spitz [39]
requires scan-line ordering of components and matching of ordered components to queried com-
ponents. To implement this method using our representation, we decompress the prototype size,
prototype image, block membership and component layout streams. The skew angle of the doc-
ument is first estimated, as described above, and the bounding boxes are horizontally projected.
The projection is then scanned to determine the locations of lines of text. We scan the lines from
top to bottom and record the components which each line contains. This method picks up disjoint

components, such as the dots in the ‘i’ and ‘j’, very nicely. It is also very stable to errors in locations

28

Abstract

n
ot oy from comnyyression

In this pg,
8PET we descry
technique g 4, eseribe o strycg, of storage , which
¢ ctural g0 nece reduces g
nd retricuar gy a1 document teay mxc:;:m:'&wn €S8 and seareh 1y’ bl:f 2150 from the aby Lh; e
rim 7t imiage sior 8 underly o pr
s Tepresentatin Y i s i 0 effcensy elying Gacumens sy 2
Y. A secondary ppgerte 9 ONSMission and g Ut Yesearch has
which alluyy qued, ICHYE i to proyig, ond dis- Strucyrg) 25 & somy
access to VA an encodin, Tepetition is
g than nsip, ”
g textur

and specified .
Jacilitates tragigimes ﬁam:,g:,'ft"; ithin e i
rocessing

ioms wi
Wlhout requiring compiege decoding,

age
opera-

ased o g propes iy orders th
ibistic e ervor ity)
an i trox
a e TeBstations fo e, SNt Rymbat s oo berfectly coge ¢
pression “eves to rey Compressi
to ollyy o 4 ratios and ason. the err, ion by
perations g are structureg 0f Mmap somety
he compre, brectly on the S0 as able; an alagps imes reng
compression compres 5 an algorith,
40 traditinmgt e SSREME 15 itnplemengeg wescs 006, formative ang co::r?;;f: -

Keywords: e e work hag lone on

y : document i :

e oo :t::tximag compression, sym. ““fﬂ: _ebm .
imayes \lz'ethed mclo k for

bolie encoding, ¢ ing 2, utloo]

1. Introduction

has tradition,

press all
frotnil ich are baseq on stati:tz
mage and haye been ab] ;

Beneratioq ¢ h1.
Ybrid coding oy oS nclude ransgoee oo A 2+ APproach
I the document. du0R€ methods, amons Textuinon
d , amor Xt-intensive do. .
CITT Grog, oo Standards such a3 £reat deal of raqup S5 images typicaily 1
ney i ave o

Srsymbols. Ve attompy g0 piog L3P Feprestrations

v approa(;h, motivated by g7 g o
: g PO 10 texitial syt ons
et d 1 €. €y are 1
e o S it T e 209 o
o, S are the
of this temp]al(:,‘
2n envoding of

arameters beyond o
o E‘xa:np!?, we find that
ocument images bencfic

digital librasiey dﬂ"ﬁiﬁi‘; o

T
o o T
Project; s research
SIS AERY (ARPA Orarict B the Advanced Resgag,
R et a0 o o

NteF error image,
Clearly, the
> the compression py
‘@ Is dependent
on hay.

Abstract

In this paper we describe a structural compression
technique fo be used for document ezt image storage
and retricvel. The primary objective is to provide an
efficient representation, sturage, transmission and dis-
play. A secondary objective is to provide an encoding
which allows access to specified regions within the image
and facilitotes troditional document processing opera-
tions withowt requiring complete decoding. We describe
an algorithm which symbolically decomposes a docu-
ment image and structurally orders the error bitmap
based on a probabilistic model. The resultant symbol
and error representations lend themseleves to reason-
ably high compression atios and are structured 5o as
%0 allow operations directly on the compressed image.

The compression scheme is implemented and compared
to traditional compression methods.

Keywords: document image compression, sym-
bolic encoding, clustering

1. Introduction

The field of image compression has traditionally
used encoding methods which are based on statisti-
cal properties of the image and have been able to
achieve compressian ratios of nearly 20:1. These first-
generation coding techniques include transform coding,
Lybrid coding and sub-band coding methods, among
others. In the document domain, standards such as
CCITT Group 3 and 4 fax compression have produced
similar results. More recently, second-generation com-
pressiou algorithins based on human visual behavior
{10} have been explored which have the potential for
muich higher compression ratios. A large number of
methods have appeared In the literature including bit-
stream coding (15], vecior quantization id], wavelet
transform (3, 10] and fractal coding (17. Tn the doc-
ument dormain, the measure of a good compression al-
gorithm may have a number of parameters beyand the
traditional space reduction. For example, we find that
digital libraries which contain document images bencfit

T SupBOTTof-thia. rescarch by the Advanced Research
Projects Agency (ARPA Order No. A530), under contract MDA
9049-3C-T217, is greatefully ackowledged.

Figure 21: Deskewing example: a) Skew at five degrees, b) five

of objects and in scan direction.

not only from compression, which reduces the amount
of storage necessary, but also from the ability to pro-
coss and scarch the underlying documeuts casily and
efficiently.
Qur research has 2 somewhat different flavor in that
steuetural repetitiou is recognized and coded, rather
than using texture coding and resolution reduction.
Our approach is based ou work suggested by Ascher
i1], where a dynamic library was created to classify fu-
uire observations and achieve high compression ratios,
and later by Witten [16], where the error map was in-
troduced to perfectly code the original image, or to
achicve lossy compression by omitting it. Omission of
the error map sometimes renders document tmread-
able; an algorithm needs to allocate bits which are in-
formative and contribute significantly toward readabil-
ity. Other fundamental difficulties with many tradi-
tional compression methods is their inability to process
the image in the compressed domain. Althongh some
work has been done on the processing of compressod
images {12], the outlook for applying such techniques
to second-generation methods toes nat seem protnis-
ing. Tn our work we introduce an error map ordering
scheme which allows high levels of lossless compres-
sion, graceful degradation in lossy compression, and
compressed domain document processing.

2. Approach

Text-intensive document images typically have a
great deal of redundancy in the bitmap representations
of symbols. We attempt to make use of this redundancy
by encoding sets of similar symbols once, and repre-
senting a symbol by the encoded representative and a
difference. If the symbols are clustercd accurately, the
differences will typically represent uoisc on the symbol
boundary. If this noisa can be characterized, we can
pravide a lossy scheme which ignores these extraneous
pixels
In our approach, motivated by {16], small regions
that are believed to correspoud to textual symbols are
identified tu the image. They are clustered and a tem-
plate is created for each cluster. The regions are then
represented uniquely by a combination of this template,
its location in the original image, and an encoding of
the error image.

Clearly, the compression ratio is dependent on hav-

degree deskew

Once the components are ordered we apply a feature-based matching algorithm. We classify

each component as being an z-height, an ascender, a descender, an

(A3

”
17

a]

W

second-level classification checks if there exists a hole in the component, and a third checks for the

existence of a concavity from the right. These features are computed only for the prototypes rather

than for the individual components. The heights of the components are measured only for the first

ten instances of each prototype in the image, and their values are averaged. The input query is

mapped into this feature space using a simple lookup table; 90% of the maximum score is taken to

be a match. Figure 22 shows search results on the 122 database images for the query “approach”. It
took an average of 2.7 seconds per image to obtain the results. There are fundamental ambiguities
associated with using our small set of features; for example, we are treating characters like “a” and

“0” as belonging to the same feature class. However, the effects of these ambiguities are greatly

reduced when a string of features is used in matching.

29

, or punctuation. A

omputational 1¢ advantage aplace transto:
is approach. . [" approach, zw approach w
table. but hav ical” (no cor:s and eigenfu

@ (b) ©
ocedure based using the eige 1Clices In Iindt
1is approach le nt approach wrst approach is
¢ reconstructic ations, equatio nditional prot
e © ®
papilty, a 1cid 4 one. 1 desirdoie pIc
nis approach is d approach z1is approach i
irticular interp ghle and desir formula has

© () ®

1 unut e iol
on approach o
rinal version ol

@

Figure 22: Query results for the string “approach” on selected images from the University of
Washington Database [11].

8 Conclusion

Computer systems are being increasingly used to process and analyze images of many forms. These
tasks vary in computational complexity and in storage and communication requirements. Advances
in data compression have been able to reduce these requirements; a compressed file takes less storage
space, takes less time to read and process, and takes less channel capacity to transmit. Compression
is especially important in handling document images due to the large file sizes involved and the large
amount of processing they require. With the increasing popularity of digital libraries, retaining
and presenting scanned documents in image form remains a cost-effective and usually accurate way
to distribute document information that was originally in hard copy.

We have developed a system that addresses all aspects of document image compression, espe-
cially those related to transmission and processing. Our system achieves compression while still

allowing for efficient processing. It is evident that the important information in documents is at the

30

symbol level, and the structure of the symbols needs to be preserved. This implies that we cannot
use traditional resolution-reduction methods to achieve compression. Instead, we take a pattern-
matching and substitution approach. In this approach, we represent information hierarchically, and
we create a residual coding that is structurally efficient. It remains only to demonstrate processing
efficiency. This paper has described methods of performing a wide variety of document processing
tasks. We have shown that symbolic coding is very efficient for image retrieval. Image analysis
tasks such as skew estimation, correction, and keyword searching can also be performed efficiently
since the symbolic representation preserves sufficient information to be used in these tasks.

In this paper we have addressed the problem of compression strictly in the image domain, and
for good reason. It is clear that the ultimate form of symbolic compression is simply to recognize
the symbols and represent them by their ASCII codes. However, such a compressed representation
suffers by not preserving information about the fonts, point sizes, locations on the page, etc.
To varying degrees such features can be preserved, but the representation does not allow us to
reconstruct a truly lossless version of the original. A hybrid compression scheme which integrates

ASCII symbols which can be recognized with high accuracy into a scheme such as ours would be

ideal.

References

[1] M.R. Anderberg. Cluster Analysis for Applications. Academic Press, 1973.

[2] R. Ascher and G. Nagy. A means for achieving a high degree of compaction on scan-digitized

printed text. IEEF Transactions on Computers, 23:1174-1179, 1974.

[3] M. Atallah, Y. Genin, and W. Szpakowski. Pattern matching image compression: Algorithmic
and empirical results. Technical Report CSD TR-95-083, Computer Science Department,
Purdue University, 1995.

[4] H.S. Baird. The skew angle of printed documents. In Proceedings of the SPSE 40th Annual

Conference and Symposium on Hybrid Imaging Systems, pages 21-24, 1987.

[5] M.F. Barnsley and L.P. Hurd. Fractal Image Compression. A.K. Peters, 1993.

31

[6] G. Bessho, K. Ejiri, and J.F. Cullen. Fast and accurate skew detection algorithm for a text doc-
ument or a document with straight lines. In Proceedings of the SPIE - Document Recognition,

volume 2181, pages 133-140, 1994.

[7] D. Bodson, S. Urban, A. Deutermann, and C. Clarke. Measurement of data compression in

advanced group 4 facsimile system. Proceedings of the IEFFE, 73:731-739, 1985.

[8] N. Faller. An adaptive system for data compression. In Proceedings of the Asilomar Conference

on Circuits, Systems and Computers, pages 593-597, 1973.

[9] R. Gallager. Variations on a theme by Huffman. IEEE Transactions on Information Theory,
24:668-674, 1978.

[10] A. Gersho and R. Gray. Vector Quantization and Signal Compression. Kluwer Academic
Publishers, Boston, 1992.

[11] R. Haralick. UW English document image database I: A database of document images for
OCR research. CDROM.

[12] M. Holt and C. Xydeas. Recent developments in image data compression for digital facsimile.

ICL Technical Journal, pages 123—-146, 1986.

[13] P. Howard. Lossless and lossy compression of text images by soft pattern matching. In

Proceedings of the IFEE Data Compression Conference, pages 210-219, 1996.

[14] T. Huang. Run length coding and its extensions. In T. Huang and O. Tretiak, editors, Picture
Bandwidth Compression, pages 231-264. Gordon and Breach, 1972.

[15] K. Culick IT and V. Valenta. Finite automata based compression of bi-level images. In Pro-

ceedings of the IEFE Data Compression Conference, pages 280289, 1996.

[16] S. Inglis and I. Witten. Compression-based template matching. In Proceedings of the IEEE

Data Compression Conference, 1994.
[17] A. Jain. Fundamentals of Digital Image Processing. Prentice-Hall, 1989.

[18] O. Johnsen, J. Segen, and G. Cash. Coding of two-level pictures by pattern matching and
substitution. Bell System Technical Journal, 62:2513-2545, 1983.
32

[19]

[25]

T. Kanungo, R.M. Haralick, and I.T. Phillips. Global and local document degradation models.
In Proceedings of the International Conference on Document Analysis and Recognition, pages

730-734, 1993.

O. Kia and D. Doermann. Structure-preserving image compression and transmission. In
Proceedings of the International Conference on Image Processing, volume I, pages 193-196,

1996.

0. Kia and D. Doermann. Symbolic compression for document analysis. In Proceedings of the

International Conference on Pattern Recognition, volume III, pages 664-668, 1996.

0. Kia, D. Doermann, and R. Chellappa. Compressed-domain document retrieval and analysis.

In Proceedings of the SPIE - Multimedia Storage and Archiving Systems, volume 2916, 1996.
D. Knuth. Optimal binary search trees. Acta Informatica, 1:14-25, 1971.

J. Liu, C.M. Lee, and R.B. Shu. An efficient method for the skew normalization of a document
image. In Proceedings of the International Conference on Pattern Recognition, volume III,

pages 122-125, 1992.

T. Luczak and W. Szpakowski. A lossy data compression based on an approximate pattern
matching. Technical Report CSD TR-94-072, Computer Science Department, Purdue Univer-
sity, 1995.

C. Maa. Identifying the existence of bar codes in compressed images. CVGIP: Graphical
Models and Image Processing, 56:352-356, 1994.

K. Mohiuddin. Pattern Matching with Application to Binary Image Compression. PhD thesis,
Stanford University, 1982.

K. Mohiuddin, J. Rissanen, and R. Arps. Lossless binary image compression based on pattern
matching. In Proceedings of the International Conference on Computers, Systems, and Signal

Processing, pages 447-451, 1984.

S. Mori, C.Y. Suen, and K. Yamamoto. Historical review of OCR research and development.

Proceedings of the IFEFE, 80:1029-1058, 1992.

33

[30]

[35]

[36]

[37]

[38]

[39]

[40]

Y. Nakano, Y. Shima, H. Fujisawa, J. Higashino, and M. Fujinawa. An algorithm for the skew
normalization of document image. In Proceedings of the International Conference on Pattern

Recognition, pages 8-13, 1990.

L. O’Gorman. The document spectrum for page layout analysis. IEFEFE Transactions on Pattern

Analysis and Machine Intelligence, 15:1162-1173, 1993.

T. Pavlidis and J. Zhou. Page segmentation and classification. CVGIP: Graphical Models and
Image Processing, 54:484-496, 1992.

W. Pennebaker and J. Mitchell. Probability estimation for the Q-Coder. IBM Journal of
Research and Development, 32:737-752, 1988.

W. Pennebaker, J. Mitchell, G. Langdon, and R. Arps. An overview of the basic principles of
the Q-Coder adaptive binary arithmetic coder. IBM Journal of Research and Development,
32:717-726, 1988.

W. Postl. Detection of linear oblique structures and skew scan in digitized documents. In

Proceedings of the International Conference on Pattern Recognition, pages 687-689, 1986.

W. Pratt, P. Capitant, W. Chen, E. Hamilton, and R. Willis. Combining symbol matching
facsimile data compression system. Proceedings of the IFEF, 68:786—796, 1980.

K. Rose. Deterministic Annealing, Clustering and Optimization. PhD thesis, California Insti-

tute of Technology, 1991.

C. Shannon. A mathematical theory of communication. Bell Systems Technical Journal,

27:623-656, 1948.

A. Spitz. An OCR based on character shape codes and lexical information. In Proceedings of

the International Conference on Document Analysis and Recognition, pages 723-728, 1995.

A.L. Spitz. Skew determination in CCITT Group 4 compressed document images. In Proceed-
ings of the First Symposium on Document Analysis and Information Retrieval, pages 11-25,

1992.

34

[41]

[42]

43]

[44]

[45]

[46]

[47]

[48]

A.L. Spitz. Logotype detection in compressed images using alignment signatures. In Proceed-
ings of the Fifth Symposium on Document Analysis and Information Retrieval, pages 303-310,
1996.

J. Vitter. Design and analysis of dynamic Huffman codes. Journal of the Association for

Computing Machinary, 34:825-845, 1987.

I. Witten, T. Bell, H. Emberson, S. Inglis, and A. Moffat. Textual image compression: Two-
stage lossy/lossless encoding of textual images. Proceedings of the IEEFE, 82:878-888, 1994.

I. Witten, T. Bell, M. Harrison, M. James, and A. Moffat. Textual image compression. In
Proceedings of the IEFEE Data Compression Conference, pages 42-51, 1992.

I. Witten, A. Moffat, and T'. Bell. Managing Gigabytes: Compressing and Indezing Documents
and Images. Van Nostrand Reinhold, 1994.

K. Wong, R. Casey, and F. Wahl. Document analysis system. IBM Journal of Research and
Development, 26:647-656, 1982.

J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IFEFE Transac-

tions on Information Theory, 23:337-343, 1977.

J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding. IFEF

Transactions on Information Theory, 24:530-536, 1978.

35

